Unit One: Chemistry

Lesson 1: Atomic Structure

Atoms are the smallest particles of matter that still have the properties of that element.

Elements can be found alone as elements (eg He) or they can join together into molecules to form compounds (eg H_2O)

Chemical reactions occur when atoms rearrange and form new partnerships

Atoms contain subatomic particles

Name	Symbol	Charge	Location in atom	Mass (amu)
proton	р	+1	nucleus	1
neutron	n	0	nucleus	1
electron	e	-1	outside the nucleus	0

- The nucleus is at the centre of an atom.
- The nucleus is composed of protons and neutrons.
- Electrons exist in the space surrounding the nucleus.
- # of protons = # of electrons in every atom
- Nuclear charge = charge on the nucleus = # of protons
- Atomic number = # of protons = # of electrons

Element	Atomic number	# Protons	# Electrons	# Neutrons	Atomic Mass
Na	11	11	11	12	23
Р					
С					
Са					
S					
F					
Fe					
Ι					
Lu					
V					
Ва					
Со					
N					

Metals lose electrons and become positive ions (cations).

Non-metals gain electrons and become negative ions (anions).

Ion	Atomic	# Protons	# Electrons	# Neutrons	Atomic Mass
	number				
F ⁻¹					
Ca ²⁺					
0-2					
N-3					
H+1					
Fe ³⁺					

Additional Practice

Symbol	Element name	Atomic Number	# Protons	# Neutrons	# Electrons	Atomic Mass
С						
N						
	Oxygen					
Sr						
	Selenium					
0-2						
	Magnesium					
Li ⁺¹						
Cs						
К						
	Bromine					
	Fluorine					
Co ⁺³						
	Neon					
	Radon					
		47			46	
		74				
			13			
			92			
Al ⁺³						
Cu ⁺²						
	Calcium				18	
			24		21	
	Selenium				36	
					76	197

Lesson 2: The Bohr Model of the Atom

Niels Bohr introduced the Bohr model in 1913. It depicts the atom as a small, positively charged nucleus surrounded by electrons that travel in orbitals around the nucleus.

Bohr's model was based on observations and calculations at the time that showed the energy associated with the transitions of electrons moving from one energy level or orbital to another.

These different transitions correspond to the different orbitals, which are at different distances from the nucleus and thus have specific energies.

In the Bohr model the first orbital holds 2 electrons, the next two hold 8 electrons each and the next orbital holds 18 electrons.

- It has 2 + 8 + 8 = 18 electrons, and therefore, 18 protons.
- It has three electron shells, so it is in period 3.
- It has eight electrons in the outer (valence) shell.

Additional Practice

Draw Bohr diagrams for the following atoms or ions:

1. a) Li	b) Na	c) K
2. a) N	b) 0	c) F
3 a) Li ⁺¹	b) Na ⁺¹	c) K ⁺¹
4. a) N ⁻³	b) 0 ⁻²	c) F ⁻¹

d) Ne

Niels Bohr's Flight From the Nazis Was a Science Drama

Danish physicist Niels Bohr was a scientific genius who also displayed a coincidental penchant for espionage and intrigue. He employed these skills, along with a bit of science, to foil the Nazi at several turns.

His small crusade began in 1933 after the Nazis came to power in Germany. Over the next few years several scientists fled Germany with Bohr's help. Many

escapees went on to work on the Manhattan Project, including Edward Teller, James Franck and Otto Frisch. Some of them stayed with Bohr in Denmark, working at the Bohr Institute until moving elsewhere. In April 1940 the Nazis crossed the border into Denmark. Bohr stayed despite the danger. As the Germans marched into Copenhagen, he even deprived them of a bit of the loot they intended to claim.

Max Von Laue and James Franck, both Germans, won the Nobel Prize in physics in 1914 and 1925, respectively. Von Laue openly opposed the Nazis and Franck was Jewish. The Nobel Prize included a large gold medal with the winner's name plainly inscribed. Both men previously left their medals at Bohr's Institute for safekeeping, but with the Nazi occupation, the medals seemed as good as gone.

Bohr considered burying them but feared the Germans would find them. A Hungarian chemist, Georgy de Hevesy, worked at the Institute and realized he could dissolve them. Gold is difficult to dissolve but one substance known as "aqua regia" can do it. A few hours later the two medals were rendered into a liquid state, placed into a beaker and stored on a high shelf.

The Nazis arrived and searched the entire building, but ignored the orange-tinted beaker, literally full of liquid gold. Later, after Bohr fled the country, Hevesy left for Sweden. He returned to Denmark after the war and found the beaker intact and undisturbed. The chemist reversed the process, extracted the gold and in 1950 shipped it back to the Nobel Foundation. They recast new medals using the original gold and reissued them to Von Laue and Franck.

Bohr's wartime adventures didn't end with a pair of gold medals. His knowledge of physics and atomic theory brought the attention of the Nazi's head nuclear scientist, Werner Heisenberg. In September 1941 Heisenberg and Bohr met for a stroll in a park in occupied Copenhagen.

Heisenberg and Bohr

What they discussed is still unclear. Heisenberg later wrote he suggested that nuclear scientists in Europe suppress knowledge of atomic weapons to prevent their creation during the war. Bohr claimed Heisenberg boasted of Germany's eventual victory and talked about the creation of the bomb. At the time, Bohr didn't consider an atomic weapon feasible in the near future. Whatever the case, Bohr's opposition to the Nazis and his mother's Jewish heritage made him a marked man in the eyes of the Third Reich. He also came under the scrutiny of the Allies, who knew Germany had an atomic bomb project. Bohr's presence in occupied Europe meant he could be forced to help the German

development effort. Bohr was contacted and agreed to be extracted from Denmark in late September 1943.

The operation was carried out with great secrecy but at the last minute the Nazis learned of the plan and went after Bohr at his home. As they entered the house through the front door, the 58-year-old Bohr ran out the back, pausing at his icebox to grab a beer bottle filled with heavy water. A few Danish resistance fighters laid down covering fire, allowing Bohr to escape.

Soon he boarded a fishing boat that took him to Sweden. Safely ashore, he traveled to Stockholm. The British arranged to secretly fly him out of Sweden, but Bohr had an appointment first. He reportedly met with Swedish leaders and implored them to help Danish Jews. While there is controversy over how much Bohr's efforts effected the decision, Sweden did offer asylum and thousands of Jewish Danes took refuge there.

De Havilland Mosquito

The British sent a De Havilland Mosquito fighter bomber to retrieve the scientist. A modified version of the Mosquito served as a fast transport for special cargoes during the war. Bohr met the definition. On Oct. 7, 1943 the plane took off from a clandestine airstrip with Bohr laying on his back in the converted bomb bay.

The aircraft flew high and fast to avoid Nazi fighters. This required pilot and passenger to wear oxygen masks due to the altitude. Bohr didn't put his on and soon passed out from oxygen deprivation. When the pilot couldn't talk to the

unconscious Dane, he realized what must have happened and descended, saving the man's life. Bohr didn't regain consciousness until after the plane landed. He went to the hospital still clutching his precious bottle of heavy water.

After recovering, Bohr went to the United States to join the Manhattan Project. His contribution, even by his own admission, was minimal. By the time he arrived the scientists already at work on the bomb had surpassed his knowledge. Still, the rescue mission likely saved Bohr from a concentration camp or outright execution. He returned to Denmark after the war and died there in 1962.

Bohr's time adventures read like a spy novel even though he provided little help to the development of the atomic bomb. There was one final, amusing indignity. The bottle of heavy water Bohr grabbed during his escape and so carefully smuggled to England turned out to be the wrong one. It contained only beer.

Lesson 3: The Periodic Table

1 + H Hydrogen 1.0									META	ALS -		 	> N(ON-MET	ALS	1 – H Hydrogen 1.0	18 2 0 He Helium
1	2				Atomi	c Number	- 22	4+	- Ion charg	e(s)		13	14	15	16	17	4.0
3 + Li Lithium 6.9	4 2+ Be Beryllium 9.0				Symb Name Atomi	ol c Mass	→ Ti → Than 47.	3+ ium 9				5 B Boron 10.8	6 C Carbon 12.0	7 3- N Nitrogen 14.0	8 2- O Oxygen 16.0	9 – F Fluorine 19.0	10 0 Ne Neon 20.2
11 + Na Sodum 23.0	12 2+ Mg Magnesium 24.3	2		r	6	7	•	0	10	- 11	10	13 3+ Al Auminium 27.0	14 Si Silicon 28.1	15 3- P Phosphorus 31.0	16 2- S Sultur 32,1	17 - Cl Chlorine 35.5	18 0 Ar Argon 39.9
19 + K Potassium 39.1	20 2+ Ca Calcium 40.1	21 3+ Sc Scandium 45.0	4 22 4+ Ti ³⁺ Titanium 47.9	23 5+ V 4+ Vanadium 50.9	24 3+ Cr 2+ Chromium 52.0	25 2+ Mn 3+ Manganese 54.9	26 3+ Fe ²⁺ Iron 55.8	27 2+ Co 3+ Cobalt 58.9	28 2+ Ni ³⁺ Nidvel 58.7	29 2+ Cu ¹⁺ 63.5	30 2+ Zn Znc 65.4	31 3+ Ga Gallum 69.7	32 4+ Ge Germanium 72.6	33 3 As Arsenic 74.9	34 2- Se Selenium 79.0	35 – Br Bromine 79.9	36 0 Kr Krypton 83.8
37 + Rb Rubidium 85.5	38 2+ Sr Stronfum 87.6	39 3+ Y Ytrium 88.9	40 4+ Zr Zirconium 91.2	41 3+ Nb 5+ 92.9	42 2+ Mo 3+ Molybdenum 95.9	43 7+ Tc Technetium (98)	44 3+ Ru 4+ Ruthenium 101.1	45 3+ Rh 4+ Rhodium 102.9	46 2+ Pd 4+ Paladium 106.4	47 + Ag _{Silvar} 107.9	48 2+ Cd Cadmium 112.4	49 3+ In Indum 114.8	50 4+ Sn ²⁺ ^{Tin} 118.7	51 3+ Sb 5+ Antimony 121.8	52 2 Te ^{Telurium} 127.6	53 – I Iodine 126.9	54 0 Xe Xaron 131.3
55 + Cs Cesium 132.9	56 2+ Ba Barlum 137.3	57 3+ La Lanthanum 138.9	72 4+ Hf Hatnium 178.5	73 5+ Ta Tantalum 180.9	74 6+ W Tungsten 183.8	75 4+ Re 7+ Rhanium 186.2	76 3+ Os 4+ 0smium 190.2	77 3+ Ir 4+ Iridium 192.2	78 4+ Pt 2+ Plainum 195.1	79 3+ Au ¹⁺ Gold 197.0	80 2+ Hg Mercury 200.6	81 1+ TI 3+ Thalium 204.4	82 2+ Pb 4+ Lead 207.2	83 3+ Bi 5+ Bismuth 209.0	84 2+ Po Polonium (209)	85 – At Astatine (210)	86 0 Rn Badon (222)
87 + Fr Francium (223)	88 2+ Ra Radium (226)	89 3+ Ac Actinium (227)	104 Rf Rutherfordium (261)	105 Db Dubnium (262)	106 Sg (263)	107 Bh Bohrium (262)	108 Hs Hassium (265)	109 Mt Metnerium (266)	110 Ds Darnstactium (281)	111 Rg Roentgenium (272)	112 Uub Ununbium (285)	113 Uut Ununtium (284)	114 Uuq Uhunquadium (289)	115 Uup Ununpentium (288)	116 Uuh Ununhexium (292)	117 Uus Ununseptium (?)	118 Uuo Ununoctium (294)
Alkali Metals	Alkaline Earth Metals		\mathcal{N}												-	Halogens	Noble Gases
Based on r	nass of C-1	2 at 12.00		58 3+ Ce ^{Cerium} 140.1	59 3+ Pr 4+ Praseodymium 140.9	60 3+ Nd Neodymium 144.2	61 3+ Pm Promethium (145)	62 3+ Sm 4+ Samarium 150.4	63 3+ Eu ²⁺ Europium 152.0	64 3+ Gd Gadolinium 157.3	65 3+ Tb 4+ Terbium 158.9	66 3+ Dy Dysprosium 162.5	67 3+ Ho ^{Holmium} 164.9	68 3+ Er Etblum 167.3	69 3+ Tm 2+ Thulum 168.9	70 3+ Yb 2+ Ytarbium 173.0	71 3+ Lu Lutetium 175.0
Any value i is the mass stable or be elements w	in parenthe s of the mo: est known i which do no	ses st sotope for t occur nat	urally	90 4+ Th Thorium 232.0	91 5+ Pa ⁴⁺ Protactinium 231.0	92 6+ U 4+ Uranium 238 0	93 5+ Np 3+ Neptunium 6+ (237)	94 4+ Pu 6+ Putonium 5+ (244)	95 3+ Am 4+ 5+ Americium6+ (243)	96 3+ Cm ^{Curium} (247)	97 3+ Bk 4+ Berkelum (247)	98 3+ Cf Californium (251)	99 3+ Es Einsteinium (252)	100 3+ Fm Fermium (257)	101 2+ Md 3+ Mendelevium (258)	102 2+ No 3+ Nobelium (259)	103 3+ Lr Lawrencium (262)

In the periodic table, elements are listed in order by their atomic number.

Metals are on the left (the transition metals range from group 3 to group 12), non-metals are on the right, and the metalloids form a "staircase" toward the right side.

Rows of elements (across) are called periods.

Columns of elements are called groups, or families.

Group 1 = alkali metals

Group 2 = alkaline earth metals

Group 17 = the halogens

Group 18 = noble gases

All elements in a family have similar properties and bond with other elements in similar ways.

This is because all the members of a family have the same number of electrons in their outermost electron orbital.

These electrons are called valence electrons.

Li, Na and K react in the same way and will form +1 charged ions. F and Cl will react the same and form -1 ions.

This is because all elements want to have a full outer orbital of electrons.

Atoms form bonds so that they can have full outer orbitals.

This is called the Octet Rule

Lesson 4: Ionic and Covalent Bonds

1) Ionic Bonds

Metal atoms will lose valence electrons and non-metal atoms will gain these valence electrons. This process creates a positive metal ion and a negative nonmetal ion. Their mutual attraction is called

metal ion. Their mutual attraction is called an Ionic Bond.

Metal plus Non-metal makes an Ionic Compound that is held together by an Ionic Bond.

2) Covalent Bonds

Non-metal atoms can share electrons to form **Covalent Bonds**

<u>Non-Metal</u> plus <u>Non-metal</u> makes a <u>Covalent Compound</u> that is held together by an <u>Covalent Bond</u>.

Lesson 5: Writing Ionic Formulae

When writing the formula for an ionic compound, the positive charges balance out the negative charges.

The ratio of positive:negative charges gives the proper formula.

The ratio is always written in reduced form.

Eg. 1: What is the formula for magnesium phosphide?

-magnesium is Mg²⁺ and phosphorous is P³⁻

-lowest common multiple of 2 and 3 is 6

-need 3 Mg^{2+} ions to combine with 2 P^{3-} ions

- -Which gives a formula of: **Mg₃P₂**
- **Eg. 2:** Complete the following table of ionic compounds

	Cl-1	0-2	N ⁻³	OH-1	SO 4 ⁻²	PO ₄ -3
Na ⁺¹	NaCl	Na ₂ O	Na ₃ N	NaOH	Na ₂ SO ₄	Na ₃ PO ₄
Ag ⁺¹						
Mg ⁺²						
Fe ⁺³						
Pb ⁺⁴						
V+5						
Cr+6						
Mn ⁺⁷						

Additional Practice

	F ⁻¹	Br-1	S-2	0-2	P-3	MnO ₄ -1	N ⁻³	SO4 ²⁻	0H-1	PO ₄ -3
Na+										
Ca ²⁺										
Fe ³⁺										
K+										
Sr ²⁺										
Al ³⁺										
Cs+										
Cu ²⁺										
V ⁵⁺										
Ag+										
Mg ²⁺										
Co ³⁺										
Cr ³⁺										
Mn ⁶⁺										

Lesson 6: Naming Ionic Compounds

When naming ionic compounds we need to first identify whether the metal ion is multivalent. Multivalent means that the ion can have different combining capacities or charges in different compounds.

The metal ions in the first two columns on the left (Alkali

metals and Alkaline Earth metals) have only a +1 or +2 charge.

1	LiO	
2	NaCl	
3	MgF ₂	
4	BeBr ₂	
5	SrI ₂	
6	Rb ₂ O	
7	Cs ₃ N	
8	K ₃ P	
9	Ca_3N_2	
10	BaS	
11	SrS	
12	Na ₃ N	
13	KCl	
14	MgCl ₂	
15	BaI ₂	
16	Rb ₃ P	
17	Sr_3P_2	
18	MgSe	
19	LiI	
20	RaTe	

Nearly all other metals on the chart are capable of being multivalent.

If the compound contains a metal that is multivalent your name must include brackets with the Roman numeral that represents the value of the charge on the metal ion.

XI X

VII

IX

VIII

Π

III

IV

1	NiCl ₂	
2	FeBr ₂	
3	FeBr ₃	
4	CuI	
5	CuI ₂	
6	Au_2O_3	
7	V_2O_5	
8	MnO ₃	
9	Zr_3N_2	
10	CrS	
11	TiO ₂	
12	TiO ₃	
13	ScF₃	
14	CoBr ₃	
15	MoP	
16	WAt ₂	
17	OsO ₂	
18	HgCl	
19	ZnCl ₂	
20	SnCl ₄	

Some ions are made up of groups of atoms that join together and then are called something unique. These are called polyatomic ions.

When we named ions of single non-metal elements their names ended in *-ide*. If we have a polyatomic ion in the compound the name does not change. (see the table of polyatomic ions)

1	LiOH	
2	NaMnO ₄	
3	MgSO ₄	
4	Be(ClO) ₂	
5	SrCr ₂ O ₇	
6	Rb ₂ CO ₃	
7	Cs_3PO_4	
8	K ₂ SO ₃	
9	$Ca_3(PO_4)_2$	
10	Ba(NO ₃) ₂	
11	Sr(NO ₂) ₂	
12	Na ₃ PO ₄	
13	KCN	
14	MgCrO ₄	
15	Ba(CN)2	
16	RbClO ₂	
17	Sr(CH ₃ COO) ₂	
18	Mg(HSO ₄) ₂	
19	LiHS	
20	Ra(HCO ₃) ₂	

1	Sodium nitrate
2	Aluminum phosphate
3	Chromium (IV) iodide
4	Ammonium bromide
5	Strontium hypochlorite
6	Manganese (II) sulphate
7	Iron (II) carbonate
8	Nickel (II) hydroxide
9	Copper (II) sulphate
10	Calcium permanganate
11	Lithium cyanide
12	Barium iodide
13	Ammonium nitrite
14	Sodium bromide
15	Tungsten (IV) oxide
16	Magnesium hydroxide
17	Titanium (IV) sulphide
18	Chromium (IV) phosphate
19	Silver (I) carbonate
20	Beryllium chlorite

Additional Practice

Name the following		Provide the formula for the following			
1	NaI		21	Calcium Iodide	
2	CaS		22	Sodium Sulphide	
3	SrCl ₂		23	Potassium Cyanide	
4	KNO ₃		24	Rubidium Phosphate	
5	Ba(CN) ₂		25	Vanadium (V) Oxide	
6	TiCl ₄		26	Iron (III) Hydroxide	
7	Fe(OH) ₃		27	Sodium Dichromate	
8	Mn ₂ O ₃		28	Aluminum (III) Chloride	
9	VPO ₄		29	Manganese (IV) Cyanide	
10	$K_2Cr_2O_7$		30	Lead (IV) Oxide	
11	ZnSO ₃		31	Lithium Sulfite	
12	NaCH ₃ COO		32	Iridium (II) Nitride	
13	AgNO ₂		33	Tungsten (IV) Carbide	
14	Ni(ClO ₄) ₂		34	Strontium Nitrite	
15	Cr(HS) ₃		35	Iron (II) Bicarbonate	
16	Cu(MnO ₄) ₂		36	Magnesium Acetate	
17	CaCO ₃		37	Cobalt (III) Hypochlorite	
18	0s04		38	Tin (IV) Nitrite	
19	Ti ₃ (PO ₃) ₄		39	Chromium (IV) Chromate	
20	MoP		40	Yttrium (II) Phosphite	

1	LiO		21	NiCl ₂	
2	NaCl		22	FeBr ₂	
3	MgF ₂		23	FeBr ₃	
4	BeBr ₂		24	CuI	
5	SrI ₂		25	CuI ₂	
6	Rb ₂ O		26	Au ₂ O ₃	
7	Cs ₃ N		27	V ₂ O ₅	
8	K ₃ P		28	MnO ₃	
9	Ca_3N_2		29	Zr_3N_2	
10		Barium sulphide	30		Chromium (II) sulphide
11		Strontium sulphide	31		Titanium (IV) oxide
12		Sodium nitride	32		Titanium (VI) oxide
13		Potassium chloride	33		Scandium (III) fluoride
14		Magnesium chloride	34		Cobalt (III) bromide
15		Barium iodide	35		Molybdenum (III) phosphide
16		Rubidium phosphide	36		Tungsten (II) astinide
17		Strontium nitride	37		Osmium (IV) oxide
18		Magnesium selenide	38		Mercury (I) chloride
19		Lithium iodide	39		Zinc (II) chloride
20		Radium telluride	40		Tin (IV) chloride

1	LiOH		21	NaNO ₃	
2	NaMnO ₄		22	AlPO ₄	
3	MgSO ₄		23	CrI ₄	
4	Be(ClO) ₂		24	NH ₄ Br	
5	SrCr ₂ O ₇		25	Sr(ClO) ₂	
6	Rb ₂ CO ₃		26	MnSO ₄	
7	Cs ₃ PO ₄		27	FeCO ₃	
8	K ₂ C ₂ O ₄		28	Ni(OH)2	
9	Ca ₃ (PO ₄) ₂		29	CuSO ₄	
10		Barium nitrate	30		Iron (III) manganate
11		Strontium nitrite	31		Chromium (III) cyanide
12		Sodium phosphate	32		Barium iodide
13		Potassium cyanide	33		Ammonium nitrite
14		Manganese (II) chromate	34		Tantalum (I) bromide
15		Barium thiocyanate	35		Rhodium (I) fluoride
16		Silver (I) chlorite	36		Magnesium hydroxide
17		Titanium (IV) acetate	37		Titanium (II) oxide
18		Iron (III) sulphite	38		Niobium (II) oxalate
19		Iridium (II) hypochlorite	39		Nickel (II) carbonate
20		Potassium dichromate	40		Berrylium oxide

Lesson 7: Naming Covalent Compounds

Covalent compounds are made up of non-metal atoms only.

Eg. 1: What is the name of CCl₄?

As we did with ionic compounds we start by writing the names of both elements and then change the second element's name to end with *–ide*.

We then use the prefixes to indicate how many of each atom are within the molecule.

Which give us: carbon tetrachloride

One rule to remember is to never start a name with the *mono-* prefix.

Eg. 2: What is the name for P_2O_4 ?

Eg. 3: What is the name for OF₂?

Eg. 4: What is the name for CO₂?

Eg. 5: What is the name for CS₂?

Additional Practice

	Name the following		Provide the formula for the following		
1	PI ₃		21	Nitrogen dioxide	
2	CBr ₄		22	Sulphur hexafluoride	
3	N ₂ O		23	Dinitrogen tetrasulphide	
4	NO		24	Sulphur dioxide	
5	N_2O_4		25	Bromine trifluoride	
6	P ₄ S ₁₀		26	Phosphorus trichloride	
7	S ₂ F ₈		27	Disulphur hexaoxide	
8	H ₂ O		28	Diiodine hexafluoride	
9	NI ₃		29	Carbon monoxide	
10	PCl ₅		30	Iodine difluoride	
11	SI ₃		31	Phosphorous pentabromide	
12	N_2O_5		32	Sulphur trioxide	
13	SF ₂		33	Oxygen difluoride	
14	CH ₄		34	Nitrogen monoxide	
15	CS ₂		35	Dihydrogen monosulphide	
16	SeCl ₂		36	Chlorine trifluoride	
17	NH ₃		37	Xenon hexafluoride	
18	СО		38	Sulphur tetrabromide	
19	CO ₂		39	Iodine phosphide	
20	N ₂ O		40	Tribromine nitride	

Lesson 8: Chemical Equations

In chemical reactions <u>reactants</u> turn into new substances with new properties called <u>products</u>.

We need to write chemical reaction in two different ways:

1) A word equation

Copper metal + nitric acid \rightarrow aqueous copper (II) nitrate + nitrogen dioxide gas + water

2) A symbolic equation

$Cu_{(s)} + 4HNO_{3(aq)} \rightarrow Cu(NO_3)_{2(aq)} + 2NO_{2(g)} + 2H_2O_{(l)}$	State of matter
	- Letters indicate the state of each compound.
Coefficients are the whole numbers found at the front of molecules in a balanced chemical equation.	(aq) = aqueous/dissolved in water
	(s) = solid
	(
	(g) = gas

The law of conservation of mass.

In a chemical reaction matter is neither created nor destroyed, just rearranged. The total mass of the reactants equals the total mass of the products.

The number of atoms in the reactants is the same as the number of atoms in the products.

Because of this we when we write equations we must acknowledge this by accounting for the conservation of matter.

Antoine and Marie-Anne Lavoisier

Balancing chemical reactions

We balance chemical equations to make the total mass of reactants and products equal.

Starting with an unbalanced or skeletal equation we can **<u>only</u>** add or change the whole number coefficients found in front of the molecules.

Eg. 1: Balance the following skeletal equations

There are some special elements that when they are alone form into pairs or other arrangements. They are:

I₂, Br₂, Cl₂, F₂, O₂, N₂, H₂, S₈, P₄

Balancing equations from word equations

Write the balanced equation for the reaction between tin (IV) nitrate and potassium phosphate that produces tin (IV) phosphate and potassium nitrate

Start by writing the skeletal equation:

$$Sn(NO_3)_4 + K_3PO_4 \rightarrow Sn_3(PO_4)_4 + KNO_3$$

Then balance by adding the required coefficients:

 $\underline{\qquad} Sn(NO_3)_4 + \underline{\qquad} K_3PO_4 \rightarrow \underline{\qquad} Sn_3(PO_4)_4 + \underline{\qquad} KNO_3$

Balance the following:

11) Lithium phosphate + magnesium sulphate \rightarrow lithium sulphate + magnesium phosphate

12) Barium hydroxide + hydrochloric acid \rightarrow water + barium chloride

13) Copper (II) nitrate + aluminum \rightarrow copper + aluminum nitrate

14) Sulphur (S₈) + fluorine (F₂) \rightarrow sulphur hexafluoride

$$_Cu + _O2 \rightarrow _CuO$$

 $2Cu + _O2 \rightarrow 2CuO$

Additional Practice

$$1) \qquad _ C_{6}H_{6} + _ O_{2} \rightarrow _ H_{2}O + _ CO_{2}$$

$$2) \qquad _ Nal + _ Pb(SO_{4})_{2} \rightarrow _ Pbl_{4} + _ Na_{2}SO_{4}$$

$$3) \qquad _ NH_{3} + _ O_{2} \rightarrow _ NO + _ H_{2}O$$

$$4) \qquad _ Fe(OH)_{3} \rightarrow _ Fe_{2}O_{3} + _ H_{2}O$$

$$5) \qquad _ HNO_{3} + _ Mg(OH)_{2} \rightarrow _ H_{2}O + _ Mg(NO_{3})_{2}$$

$$6) \qquad _ H_{3}PO_{4} + _ NaBr \rightarrow _ HBr + _ Na_{3}PO_{4}$$

$$7) \qquad _ C + _ H_{2} \rightarrow _ C_{3}H_{8}$$

$$8) \qquad _ CaO + _ Mnl_{4} \rightarrow _ MnO_{2} + _ Cal_{2}$$

$$9) \qquad _ Fe_{2}O_{3} + _ H_{2}O \rightarrow _ Fe(OH)_{3}$$

$$10) \qquad _ C_{2}H_{2} + _ H_{2} \rightarrow _ C_{2}H_{6}$$

$$11) \qquad _ VF_{5} + _ HI \rightarrow _ V_{2}I_{10} + _ HF$$

$$12) \qquad _ OsO_{4} + _ PtCl_{4} \rightarrow _ PtO_{2} + _ OsCl_{6}$$

$$13) \qquad _ CF_{4} + _ Br_{2} \rightarrow _ CBr_{4} + _ F_{2}$$

$$14) \qquad _ Hg_{2}I_{2} + _ O_{2} \rightarrow _ Hg_{2}O + _ I_{2}$$

15) $(NO_3)_2 + GaPO_4 \rightarrow PO_4 + Ga(NO_3)_2$

Lesson 9: Types of Chemical Reactions

1) Synthesis Reactions

A synthesis reaction is where two or more atoms or molecules combine to form a single larger molecule.

 $A + B \rightarrow AB$ $2H_{2(g)} + O_{2(g)} \rightarrow 2H_2O_{(g)}$ $2Na_{(s)} + Cl_{2(g)} \rightarrow 2NaCl_{(s)}$

2) Decomposition Reactions

A decomposition reaction is where a single larger molecule breaks apart to form two or more atoms or molecules.

> $AB \rightarrow A + B$ $2H_2O_{(g)} \rightarrow 2H_{2(g)} + O_{2(g)}$ $2NaCl_{(s)} \rightarrow 2Na_{(s)} + Cl_{2(g)}$

3) Combustion Reactions

A combustion reaction is where O_2 combines with a hydrocarbon compound to produce CO_2 and H_2O .

$$C_{3}H_{8(g)} + 5O_{2(g)} \rightarrow 3CO_{2(g)} + 4H_{2}O_{(g)}$$

 $C_{6}H_{12}O_{6(g)} + 6O_{2(g)} \rightarrow 6CO_{2(g)} + 6H_{2}O_{(g)}$

4) Single Replacement Reactions

A single replacement reaction occurs when a single metal or non-metal takes the place of a similar metal or non-metal in a compound.

$AX + Y \rightarrow AY + X$

$$ZnF_{2(s)} + K_{(s)} \rightarrow KF_{(s)} + Zn_{(s)}$$

 $CuBr_{2(s)} + Cl_{2(g)} \rightarrow CuCl_{2(s)} + Br_{2(l)}$

Eg. 1: Predict the products of the following single replacement reactions.

5) Double Replacement Reactions

A double replacement reaction is when the ions on an ionic compound switch places and form two new combinations.

 $AX + BY \rightarrow AY + BX$

 $Pb(NO_3)_{2(aq)} + MgCl_{2(aq)} \rightarrow PbCl_{2(aq)} + Mg(NO_3)_{2(aq)}$

 $CuBr_{2(aq)} + KCl_{(aq)} \rightarrow CuCl_{2(aq)} + KBr_{(aq)}$

Eg. 2: Predict the products of the following double replacement reactions.

An acid and a base react together to form a salt and water. Acids are compounds that start with H and release H⁺ ions into the water. Bases are compounds that end with OH⁻

 $HY + XOH \rightarrow H_2O + XY$

HCl + NaOH \rightarrow H₂O + NaCl

Eg. 3: Predict the products of the following acid base reactions.

HCl + Sr(OH)₂ \rightarrow _____ + ____

 $H_2SO_4 + LiOH \rightarrow _$ + _____

 $H_3PO_4 + Ca(OH)_2 \rightarrow ___ + ___$

 $HF + Al(OH)_3 \rightarrow ___ + ___$

Additional Practice: Identify the reaction type, then predict the products and balance the equations.

a. Combustion:	C ₆ H ₁₂	+	$\0_2 \rightarrow$
b. Combustion:	C4H6	+	$\0_2 \rightarrow$
c. Combustion:	C ₆ H ₁₀ O ₃	+	$\0_2 \rightarrow$
1. Synthesis:	Mg	+	$\l_2 \rightarrow$
2. Double replacement:	CuCl ₂	+	$\H_2S \rightarrow$
3. Double replacement:	NaOH	+	HClO₄→
4. Decomposition:	CaCO ₃	\rightarrow	
5. Single replacement:	HCl	+	$$ Zn \rightarrow
6	Na	+	$\MgCl_2 \rightarrow$
7	CaCl ₂	+	$\K_2CO_3 \rightarrow$
8	K	+	$_Cl_2 \rightarrow$
9	BaCl ₂	+	$\K_3PO_4 \rightarrow$
10	H2SO4	+	KOH→
11	$\KClO_3 \rightarrow$		
12	Al	+	$\0_2 \rightarrow$
13	Pb(NO ₃) ₂	+	KOH→
14	H2SO4	+	$_BaCl_2 \rightarrow$

Predicting Products Possible Quiz

For each of the following reactions, identify what type of reaction each is and then determine what the products of each will be. When you have predicted the products, balance the equation

Туре:	1)	$\underline{\qquad} C_8H_{18} + \underline{\qquad} O_2 \rightarrow$
Туре:	2)	$\underline{\qquad} Pb(NO_3)_2 + \underline{\qquad} K_2CrO_4 \rightarrow$
Туре:	3)	$\underline{\qquad} H_2 + \underline{\qquad} S_8 \rightarrow$
Туре:	4)	$_$ Cu(OH) ₂ + $_$ H ₃ PO ₄ \rightarrow
Туре:	5)	$_$ AgNO ₃ + $_$ Na ₂ CO ₃ \rightarrow
Туре:	6)	$\underline{\qquad}$ Zn + $\underline{\qquad}$ CuCO ₃ \rightarrow
Туре:	7)	NaCl →

Lesson 10: Acids and Bases

Definitions of Acid & Base

Acids and bases are very common. Acids are compounds whose formulae start with a H and when dissolved in water they produce H⁺¹ ions.

Some common acids include HCl, HNO₃, H₂SO₄, H₃PO₄

Acids are found in many cleaning products, car batteries, and in soft drinks.

Bases are compounds whose formulae end in OH and when dissolved in water will produce OH⁻¹ ions.

Some common bases include NaOH, Ca(OH)₂, NH₄OH

Bases are ingredients in oven and drain cleaner, antacids and laxatives. They are also used in the manufacture of soaps.

The pH scale

The pH scale is used to measure the relative amounts of acid or base in a solution. When the pH is 7 the solution is neutral.

The pH scale is mathematically like the Richter scale for measuring the magnitude of earthquakes. For instance, a solution that has a pH of 3 is 10 times as acidic as a solution with a pH of 4. A solution that has a ph of 12 is 1000 times as basic as a solution that has a ph of 9.

Acid Base Indicators

An acid base indicator is a chemical that changes colour in the presence of acid or base, thus making it easy to see if a solution is acidic or basic.

Different indicators will change colour at different parts of the pH scale. This can be useful to estimate the exact pH of a solution.

Properties of acids and Bases

Property	Acid	Base
Taste CAUTION: Never taste chemicals in the laboratory.	 Acids taste sour. Lemons, limes, and vinegar are common examples. 	 Bases taste bitter. The quinine in tonic water is one example.
Touch CAUTION: Never touch chemicals in the laboratory with your bare skin.	 Many acids will burn your skin. Sulfuric acid (battery acid) is one example. 	 Bases feel slippery. Many bases will burn your skin. Sodium hydroxide (lye) is one example.
Indicator tests	 Acids turn blue litmus paper red. 	 Bases turn red litmus blue.
	 Phenolphthalein is colourless in an acidic solution. 	 Phenolphthalein is colourless in slightly basic solutions and pink in moderate to strongly basic solutions.
Reaction with some metals, such as magnesium or zinc	 Acids corrode metals. 	 No reaction
Electrical conductivity	Conductive	Conductive
рН	Less than 7	More than 7
Production of ions	 Acids form hydrogen (H⁺) ions when dissolved in solution. 	 Bases form hydroxide (OH⁻) ions when dissolved in solution.

Metals from the Alkali metal and Alkaline Earth metal families will react with acids to produce hydrogen gas, $H_{2(g)}$.

Acids react with compounds that contain the carbonate ion to produce water and carbon dioxide.

Lesson 11: Organic Compounds

What does organic mean?

In chemistry an organic compound is one that is made of primarily carbon, hydrogen, oxygen and possibly a few other elements.

Carbon forms four strong covalent bonds with other carbon atoms to create large molecules that are the building blocks of all living things, plastics, medicines and fuels.

Hydrocarbons

Hydrocarbons contain only carbon and hydrogen. An example is methane (CH_4) and ethane (C_2H_6) which together are the components of natural gas.

All hydrocarbons are combustible, with the smallest molecules being gasses at room temperature. Medium sized molecules are liquids and large molecules are solids.

Lesson 12: Factors Affecting the Rate of Chemical Reactions

Controlling the rate of a chemical reaction is vital to chemistry. There are several factors that affect the rate of chemical reactions.

1) Temperature

Temperature is a measure of the average speed or kinetic energy of molecules.

The faster (or hotter) that molecules are, the faster they will react. The colder a reaction is the slower it will react.

Putting food in a fridge slows the chemical reactions that spoil food, extending the safe lifespan of food.

2) Concentration

Concentration is a measure of how much of a chemical is present in a given volume. Concentration can be measured in grams per liter. (g/L)

Increasing the concentration increases the rate of the reaction and vice versa.

Natural gas will not explode if the concentration of oxygen gas is less than 12%. Most things burn due to the relatively high percentage of O_2 in the atmosphere (21%)

In World War II American aircraft carriers routinely purged their aircraft refueling lines with CO_2 so that in the event of enemy fire the aircraft fuel being carried would not explode. The Imperial Japanese aircraft carriers did not employ this technique and when attacked exploded and were more easily destroyed.

3) Surface Area

Chemical reactions occur when reactant molecules come into contact through collisions. Increasing the surface area will increase the rate of the reaction.

Surface area can be increased by chopping the reactant into small pieces or by grinding it into a powder.

Some examples of this principle include:

- Fuel injectors spray gas into the combustion chamber of an engine as a fine mist to speed the rate at which it burns as well as to help it burn evenly.
- It's easier to start a fire with kindling as it has a greater surface area.
- Flour will burn poorly but finely ground flour dispersed in air can burn very quickly.

4) Catalysts

A Catalyst is a chemical that that allows a reaction to proceed faster but is not consumed in the reaction.

Catalysts will lower the amount of energy required to break the bonds of reactant molecules.

Some examples of catalysts include:

- Biological catalysts are called enzymes. Saliva has enzymes that start the digestion of starches into sugars
- Automobiles have catalysts that convert harmful products of combustion into less harmful compounds.
- Platinum metal act as a catalyst in many reactions involving organic compounds.

A catalytic converter is a device installed in cars to decrease pollution. Car exhaust passes through the catalytic converter before leaving the car.

Catalysts found in the honeycomb-shaped filters in the converter help to change many of the pollutants into less harmful substances.

- Poisonous carbon monoxide is changed into CO₂.
- Hydrocarbons are converted into CO₂ and H₂O.
- Nitrogen oxides are changed into N_2 and O_2 . eg. $2N_2O_3 \rightarrow 2N_2 + 3O_2$

