Lesson 2: Work and Power

What is work?

Work is done whenever a force makes something move. Work is measured in joules (J).

Work (J) is calculated by finding the product between the applied force (N) and the distance moved (m).

Work = force
$$(N)$$
 x distance (m)

$$W = F \times d$$

The force must be parallel to the distance moved otherwise no work is done.

If no distance is moved then no work is done.

Example: How much work is done by a boy pushing a car with a force of 800N for a distance of 200m?

W = F x d W = 800 N x 200m W = 160000 Nm 160000 J

Additional Practice

- 1. Work is done whenever a <u>force</u> makes an object <u>Move</u>.
- 2. Calculate the work done by a 100N force applied to a 10kg object and the object moves a distance of 10 m. $W = F \times d$ = $100 N \times 10 M$

- 3. If 20J of work is done on a 5 kg object moving it a distance of 20m, what is the applied force on the object? $W = F \times d$ $F = \frac{W}{d} = \frac{20 \text{ J}}{20 \text{ m}} = 1 \text{ N}$
- 4. A 200N force moves a 15kg object and as a result does 5000J of work on the object. What distance does the object move as a result of the work done on it?

$$W=F\times d$$
 $W=F$ $\frac{50007}{200 N} = 25 m$

5. A 10kg object is lifted a distance of 3 m. How much work was done on the object? (the acceleration due to gravity is $9.8m/s^{2_2}$)

due to gravity is
$$9.8 \text{m/s}^{2}$$
) $F = \text{rmg} = 10 \text{kg} \times 9.8 \text{N/kg} = 98 \text{N} \text{W} = F \times d$

$$= 98 \text{N} \times 3 \text{m}$$

6. How much energy did the object gain?

7. Calculate the work done when a student exerts a force of 400N to push a stalled motorcycle from a busy highway to a quiet street, a distance of 500m. There is a 200N friction force acting on the motorcycle.

(A) = $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$

= 294 nm or J

8. A Physiotherapist exerts 18N of force to move a patient's arm a distance of 0.6m. Calculate the work done on the arm.

9. A 100W immersion heater is used to warm water in a beaker for 3.0 minutes. How much energy is transferred to the water?

$$P = W$$
= $V \times t$
= $(00 \text{ W} \times (3.0 \text{ min} \times 60 \text{ s}))$
= (8.000 J)

What is Power?

Power is the rate at which work is done.

Power = work/time

$$P = W / t$$

Power is measured in watts (W), which is a joule per second.

Example: What is the power of a bulldozer that does 5.5×10^4 J of work in 1.1s?

$$P = W / t$$

 $P = 5.5 \times 10^4 J / 1.1s$

$$P = 5.0 \times 10^4 W$$

1. Complete the following table.

	Variable used	Units measure in	Unit symbol
Power -	P	walls	W
Work	W	Jooles	J
Time	-	Seconds	S

2. A water pump does 250 000 Joules of work to remove water from a swimming pool in one hour (3600 seconds). Determine the power rating of the pump.

- 3. A winch lifts a 12 kg rock vertically upward from a height of 1.0 metre to 12 metres in 15 seconds.
- a) Determine the work done by the winch.

$$W = F \times d$$
 = 12945
= $(m \times g) \times d$
= $(12 \times 9.8) \times 11m$

b) Determine the power rating of the winch.

$$P = \frac{W}{t} = \frac{1294J}{15s} = 86.2W$$

4. A 1200 Watt blow-dryer for 10 minutes (600 seconds). Determine the amount of energy that is used.

$$P = \frac{W}{t}$$
 $W = P \times t$
= 1200 W × 600 S
= 720,000 iJ

5. An alkaline AA 1.5 V battery holds around 13 000 Joules. A small toy car is rated at 0.50 W. How many seconds will the toy car be able to operate continuously?

$$P = \frac{W}{t}$$
 $t = \frac{W}{P} = \frac{13,0005}{150W} = 26,0005$

6. Determine the power for each of the following electrical appliances:

a) The output of a laser is 0.05J every second.
$$\frac{0.05J}{1S} = 0.05 \text{ W}$$

b) A curling iron uses 48000 J of energy per minute.
$$=\frac{480005}{605}=800 \text{ W}$$

c) An electric light bulb uses 2.16 x 10_s J of energy in one hour.
$$\frac{2.16 \times 10^5}{36005} = 60 \text{ W}$$

7. Determine the amount of energy transformed or used in each case:

a) A 2000W electric pencil sharpener operates for 3.0s
$$\sim$$
 2000 W $\, imes\,$ 3.05 $\,$ \sim 6000 $\,$ $\,$

b) A 1200W kettle heats water for 5 minutes.
$$1200 \text{ W} \times 3005 = 360,000 \text{ J}$$

c) A 100W stereo is operated for one hour.
$$100 \text{ W} \times 3600 \text{ S} = 360,000 \text{ J}$$