Use with textbook pages 294-297. ## Alpha, beta, and gamma radiation 1. Label the following diagram. Identify the penetrating power of the three forms of radioactive decay products: alpha particle, beta particle, and gamma ray. - 2. Indicate whether the description is referring to an alpha particle, a beta particle, or a gamma ray. The description can refer to more than one of the forms of radiation. - $_{(b)}^{0} \beta_{\text{ or } -1}^{0} e$ ______ - (d) has a charge of 0 - (e) has a charge of 1- - (f) has a charge of 2+ _____A - (g) is a helium nucleus _____A - (h) is a high-speed electron _______ - (i) is emitted from the nucleus A B G - (j) is emitted only during beta decay _____ - (k) is emitted only during alpha decay _____A - (1) can be stopped by aluminum foil _____A ______ - (m)is emitted only during gamma decay ______G - (n) is affected by electric and magnetic fields ____A___ - (o) is not affected by electric and magnetic fields _____G - (p) is a high energy wave with short wavelengths _____G - (q) is the highest energy form of electromagnetic radiation __ - (r) has low penetrating power (can be stopped by a single piece of paper) _____A - (s) has the greatest penetrating power (can only be stopped by lead or concrete) _