

7.	In rega	ard to the structure of DNA, what role do the adenine, guanine, cytosine and and thymine
	a.	They are the sugar and a phosphate backbone— these from the 5 345 of DNIT
R	(b)	They form the sets of two nitrogen bases that are paired together
السا	C.	They form the entire double helix
Ŷ	d.	They are responsible for making proteins — mitochanity in + RNA de Talls
	N 55 N952	the correct order of argenization of genetic motorial from largest to smallest
- 1000 C		y the correct order of organization of genetic material, from largest to smallest.
rlime		Gene, chromosome, nucleotide, genome Chambane &
4 5		Genome, chromosome, gene, nucleotide
. 12		Chromosome, gene, genome, nucleotide
13	a.	Chromosome, genome, nucleotide, gene
3	A strar	nd of DNA is found to contain 28% Cytosine. What percentage of the strand would be
•	Thymii	ne?
	7.55	28%
\Box		72%
اسما	C.	44% A-T : 100-56 = 448 is A+T
	(d.)	22% C-G
		L'Alexente -
4.	Which	of the following statements about gene mutation is false? A gene mutation always results in the death of the organism ×
	(a)	A gene mutation always results in the death of the organism 🗶
Λ	b.	If a gene sequence of nitrogen bases is CGATA, then an example of a mutated form of
17		the gene sequence might be AGATA
	C.	A faulty gene could potentially mutate into a healthy gene
	200	
	d.	D '' ' '
		D '' ' '
5.		Radiation, such as X-rays or UV rays, is an example of a potential mutagen of a Cause of all strand of DNA that codes for a particular protein or trait is called a:
5.		Radiation, such as X-rays or UV rays, is an example of a potential mutagen of a Cause of all strand of DNA that codes for a particular protein or trait is called a: Gene
5. A		Radiation, such as X-rays or UV rays, is an example of a potential mutagen in a Cause of all strand of DNA that codes for a particular protein or trait is called a: Gene Chromosome
5 .	A sma a b. c.	Radiation, such as X-rays or UV rays, is an example of a potential mutagen of a Cause of
5. A	A sma a b. c.	Radiation, such as X-rays or UV rays, is an example of a potential mutagen of a Cause of
A	A sma a b. c. d.	Radiation, such as X-rays or UV rays, is an example of a potential mutagen a cause of all strand of DNA that codes for a particular protein or trait is called a: Gene Chromosome Mutation Nucleotide a particular form of a gare eg short are of the following allele pairings would you expect to find in an organism expressing the
A 6.	A sma b. c. d.	Radiation, such as X-rays or UV rays, is an example of a potential mutagen of a cause of a cause of all strand of DNA that codes for a particular protein or trait is called a: Gene Chromosome Mutation Nucleotide a particular form of a quite egistic are of the following allele pairings would you expect to find in an organism expressing the
A 6.	A sma b. c. d.	Radiation, such as X-rays or UV rays, is an example of a potential mutagen of a cause of a cause of all strand of DNA that codes for a particular protein or trait is called a: Gene Chromosome Mutation Nucleotide a particular form of a quite egistic are of the following allele pairings would you expect to find in an organism expressing the
A 6.	A sma b. c. d. Which	Radiation, such as X-rays or UV rays, is an example of a potential mutagen of a cause of a cause of all strand of DNA that codes for a particular protein or trait is called a: Gene Chromosome Mutation Nucleotide a particular form of a quite egistic are of the following allele pairings would you expect to find in an organism expressing the
A 6.	A sma b. c. d. Which	Radiation, such as X-rays or UV rays, is an example of a potential mutagen of a cause of all strand of DNA that codes for a particular protein or trait is called a: Gene Chromosome Mutation Nucleotide of the following allele pairings would you expect to find in an organism expressing the or held ive Persion of a trait?
A 6.	A sma b. c. d. Which	Radiation, such as X-rays or UV rays, is an example of a potential mutagen of a cause of a cause of all strand of DNA that codes for a particular protein or trait is called a: Gene Chromosome Mutation Nucleotide a particular form of a quite egistic are of the following allele pairings would you expect to find in an organism expressing the
A 6. C	A sma b. c. d. Which recession	Radiation, such as X-rays or UV rays, is an example of a potential mutagen in a cause of a cause of all strand of DNA that codes for a particular protein or trait is called a: Gene Chromosome Mutation Nucleotide of the following allele pairings would you expect to find in an organism expressing the particular to me the content of the potential pairings would you expect to find in an organism expressing the particular to me
A 6. C	A sma b. c. d. Which recession	Radiation, such as X-rays or UV rays, is an example of a potential mutagen of a cause of all strand of DNA that codes for a particular protein or trait is called a: Gene Chromosome Mutation Nucleotide of the following allele pairings would you expect to find in an organism expressing the version of a trait? The both alleles must be recessive. To both are lower case. It so both are lower case. The plants green pods (G) are dominant over yellow pods (g). A homozygous recessive plant is
A 6. C	A sma b. c. d. Which recession	Radiation, such as X-rays or UV rays, is an example of a potential mutagen of a cause of all strand of DNA that codes for a particular protein or trait is called a: Gene Chromosome Mutation Nucleotide of the following allele pairings would you expect to find in an organism expressing the vive version of a trait? The both alleles must be recessive. The so both are lower case. It so both are lower case.
A 6. C	A sma b. c. d. Which recession d. rossec	Radiation, such as X-rays or UV rays, is an example of a potential mutagen a cause of all strand of DNA that codes for a particular protein or trait is called a: Gene Chromosome Mutation Nucleotide a particular form of a gare egishort are of the following allele pairings would you expect to find in an organism expressing the vive version of a trait? The both alleles must be recessive. The so both are lower case. The plants green pods (G) are dominant over yellow pods (g). A homozygous recessive plant is a with a heterozygous plant. What percentage of the offspring will have green pods?
A 6. C	A sma b. c. d. Which recession a. b. cossec	Radiation, such as X-rays or UV rays, is an example of a potential mutagen a cause of all strand of DNA that codes for a particular protein or trait is called a: Gene Chromosome Mutation Nucleotide of the following allele pairings would you expect to find in an organism expressing the vive version of a trait? The both alleles must be recessive. The so both are lower case. It so both are lower case. It with a heterozygous plant. What percentage of the offspring will have green pods?
A 6. C	A sma b. c. d. Which recess a. b. c. d.	Radiation, such as X-rays or UV rays, is an example of a potential mutagen a cause of all strand of DNA that codes for a particular protein or trait is called a: Gene Chromosome Mutation Nucleotide of the following allele pairings would you expect to find in an organism expressing the vice version of a trait? The both alleles must be recessive. TT So both are lower case. the plants green pods (G) are dominant over yellow pods (g). A homozygous recessive plant is a with a heterozygous plant. What percentage of the offspring will have green pods? 100% T5% 50%
A 6. C	A sma b. c. d. Which recess a. b. c. d.	Radiation, such as X-rays or UV rays, is an example of a potential mutagen a cause of all strand of DNA that codes for a particular protein or trait is called a: Gene Chromosome Mutation Nucleotide of the following allele pairings would you expect to find in an organism expressing the vive version of a trait? The both alleles must be recessive. The so both are lower case. It so both are lower case. It with a heterozygous plant. What percentage of the offspring will have green pods?
A 6. C	A sma b. c. d. Which recess a. b. c. d.	Radiation, such as X-rays or UV rays, is an example of a potential mutagen a cause of all strand of DNA that codes for a particular protein or trait is called a: Gene Chromosome Mutation Nucleotide of the following allele pairings would you expect to find in an organism expressing the vice version of a trait? The both alleles must be recessive. TT So both are lower case. the plants green pods (G) are dominant over yellow pods (g). A homozygous recessive plant is a with a heterozygous plant. What percentage of the offspring will have green pods? 100% T5% 50%

Genetics Practice Exam			3
Use the following informat	tion to answer question		
G S S S S S S S S S S S S S S S S S S S	A purebred male brown mated with a purebred fer All the offspring v	nale golden hamster.	brown BB
	Brown Hamster ()	Golden Hamster (♀)	golden bb
			5 Bb Bb Bb
11. Which of the follow	ing describes the genotype o	of the offspring?	9 1005
heterozygou b. homozygou	us	. The second sec	
d. heterozygou	is dominant us dominant and homozygous	s recessive .	
	a white flower with a red trim	when a white flower is c	rossed with a red flower?
a. mutation b. dominance c., codominance	Lo-din	ninant Wil	the Krech
d. incomplete		- Shi	E LUE
13. Hemophilia is a sex more common in m	c-linked blood clotting disorde en. This is because the allele	causing hemophilia occ	turs in the following
location (a.) on an X chro	omosome `	Lemophe	elia geraco
	(and a Y chromosome		$\sqrt{}$
d. on a non-X a	and a non-Y chromosome		1 hours
	4.0		
XXXXX		/normal-	×
VXXX			
.////	- xx	Emalo is co	crier but cices Not howe the diane
YYXY			
	- XY	258 has	theolisease since have a brenzing X
		males de ret	have a breiting X
			jene.

13 15 75% white 13 50 75% black Supprise black is cuminon to B-black white female b-white

14. When the black mouse and the white mouse were crossed, 9 out of 12 offspring were white. Which of the following describes the most likely genotype of the female parent given the fur colour of the offspring produced?

- a. heterozygous only
- homozygous dominant only
- homozygous recessive only
- homozygous dominant or heterozygous

Codons Found in Messenger RNA

Second Base

ſ	U	С	A	G	L
\sqcap	Phe	Ser	Tyr	Cys	U
ll	Phe	Ser	Tyr	Cys	C
u	Leu	Ser	Stop	Stop	A
1	Leu	Ser	Stop	Trp	G
П	Leu	Pro	Hip	Āŋ	U
	Lou	Pro	His	Ang	C
C	Leu	Pro	Gin	Am	A
1 1	Lau	Pro	Q i n	Arg	G
П	16e	The	Asn	Ser	U
	No.	The	Asn	Ser	C
1~1	ile-	The	Lys	Ang	A
	Met	The	Lys	Arg	G
П	Væ	Ala	Asp	Gly	U
1.	Val	Ala.	Asp	Gly	C
G	Vad	Ala	Glu	Gly	A
	Vad	Ale	Glu	Gly	G

15. What chain of aming/acids would be produced from the DNA sequence TAC/CCG ATG GTA?

AUC - FC WY CAIL

a. Met - Gly - Tyr - Hise b. Stop - Pro - Met - Val

c. Met - Arg - Tyr - Phe d. (lie - Val - Met - Glu

y	(CAN CAN
Which	n of	the following statements regarding gene expression are correct?
1		the following statements regarding gene expression are correct? Both transcription and translation occur in the nucleus in the encloped in his enclosion in his enclosion. The file of the policy of
11	L	Transcription makes a single strand of complementary RNA from the DNA code /
111	4	Codons are three letter sequences that correspond to a specific amino acid
IV		Transcription builds connects amino acids to form a protein it is to be to the second of the second
٧	L	Translation occurs at a ribosome

d. All are correct

 Genetics 	s Practice Exam Bood Tupe 12-68 are collomin	san + 1 Type Fire 12A : For 5.
	Alcol type o is recessive	(147215 is 0500 De
17 /	A woman with blood type AB and a man with type A have a child	- Type AB is 173
	with blood type B. What must the genotype of the father be?	Type C is oc
11.5		1 System 1
	- tather is H so Fir	91 A 1 B 1
	C. AO	
	d. It is impossible to tell from the information given.	A I FA I AB
		1 - 12
18. N	Mutations are important in evolution because	1 0 HO BO
Λ	a they are the only source of new variation in populations	
H	b. they remove less fit individuals from populations	1. Whis type
1	 c. they occur to create new species when selective pressures 	s are strong Child is typed Soo father
	 d. they create differences in fitness in populations 	So tather
40.1		can only be
19. V	Which of the following is true of variation?	1 An
	a. It is necessary for natural selection.	
()	 b. It exists in almost all populations. c. It is caused by mutations and sexual reproduction. 	-it father is A
	d. All of the choices are correct.	- if father is A Then chill can
	On the discount of the contract.	Do AA ON AB
20. A	According to Darwin's theory of natural selection, the individuals th	at tend to survive are those
ti	tnat nave	
\wedge	a) variations best suited to the environment.	
1-1	 the ability to change their bodies to fit the environment. the best luck. 	
	d. the biggest body.	
21. T	The breeding of plants and animals for particular traits by humans i	is called .
~	a. natural selection	
()	b. gene flow c. founder effect	
	d. artificial selection	

Chemistry 10 - Practice Exam

1. Which of the following best describes the properties of an electron?

	Relative Mass	Location
A.	large	In the nucelus
B.	large	Orbiting the nucleus
C.	small	In the nucleus
D.	small 🗸	Orbiting the nucleus ✓

2.	The non-meta	allic element	in the third	period other	than sulphur	and chlorine is
				() ·		

A.	oxygen ?	101	pens
	fluoring	6	

B. fluorine C. nitrogen

(D), phosphorus

metals —> purions

3. Which of the following represents the Bohr model electron arrangement of an argon atom?

- A. 2, 16
 - B. 2, 18
 - C. 2, 8, 6

4. What isotope has 25 protons and 29 neutrons?

- A. Copper-25
- B. Copper-54
- C. Manganese-29
- D Manganese-54

1 protons = atemic #

25 + 29 = mass # 57

5. What is the chemical formula for aluminum oxide?

- A)Al₂O₃
- B. Am₂O₃
- C. NH₄O
- D. (NH4)2O

6. In which of the following compounds does iron have the same ion charge (combining capacity)?

- I. FeS
- II. Fe(OH)₂
- III. FeCrO₄
- $\text{XIV. Fe}_2(\text{CO}_3)_3$

Fe +2 5 2 Fe 12 (OH-) 2 Fe+2 (10,-1 Fe+3) (0,-2)

- C. II, III and IV only
- D. I, II, III and IV

- A. Tin sulfate
- B. Tin (I) sulfate

C. Tin (II) sulfate D. Tin (IV) sulfate

- A. NO₄
- B. NO₅

- A. The mass of the reactants stays the same during a chemical reaction
- B. The mass of the products stays the same during a chemical reaction

 The type and number of atoms in the reactants equals the type and number of atoms in the products
- D. The mass of the products is always twice the mass of the reactants.

10. The reaction:
$$Zn_{(s)} + 2 HCl_{(aq)} \rightarrow H_{2(g)} + ZnCl_{2(aq)}$$
 is an example of:

- A. Synthesis
- B. Decomposition
 C. Single replacement
 D. Double replacement

11. The reaction:
$$2 \text{ KClO}_{3(s)} \rightarrow 2 \text{ KCl}_{(s)} + 3 \text{ O}_{2(g)}$$
 is an example of:

- A. Synthesis
- B' Decomposition
- C. Single replacement
- D. Double replacement

Ma

reacted

- A. Mg and O₂
- B. Mg and H₂
- C. Mg and H₂O
- D) Mg and HCl

- A. O₂
- B)H₂
- C. Cl₂
- D. MgH₂
- 14. Which set of ordered coefficients correctly balances the following equation?

15. Which of the following products would complete and balance the equation?

 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$

Combushon rx

C. 2 CO D. 2 CO₂

16. Which of the following correctly classifies each formula as an acid, base or salt?

	Acid	Base	Salt	
A.	Ca(OH) ₂	H ₂ CQ ₃	MgCl ₂	
B.	(H ₂ CO ₃	Ca(QH) ₂	MgCl₂ ✓	
C.	MgCl ₂	H ₂ CO ₃	Ca(OH) ₂	
D.	Ca(OH) ₂	MgCl ₂	H ₂ CO ₃	

17. Which of the following is most likely to cause blue litmus paper to turn red?

A. soap

most cleaners are basic Pacidian most foods are acidia.

B. baking soda C lemon juice

D. oven cleaner

18. Coffee has a pH of 5. Which of the following shows the correct colour of each pH indicator when a small amount of black coffee is tested?

	Indigo Carmine	Methyl Orange	Bromthymol Blue
A.)	blue	yellow	yellow
B.	blue	yellow	blue
C.	yellow	red	blue
D.	yellow	red	yellow

Use pH chart.

PH C-7 = Acid PH7-14 - Basc

- 19. If two substances react and the temperature of the mixture increases, the reaction is
- A. Endothermic

B) Exothermic

C. One that needs a catalyst

D. Not one that produces anything new

Exo >>> Releases energy (Heats)

Chaster >>> Compared to the compared to t

20. Which of the following reactions is written correctly for an exothermic reaction?

A.
$$2 C_2 H_{6(g)} + 7 O_{2(g)} + \text{heat} \rightarrow 4 CO_{2(g)} + 6 H_2 O_{(g)}$$

B.
$$2 C_2 H_{6(g)} + 7 O_{2(g)} - \text{heat} \rightarrow 4 CO_{2(g)} + 6 H_2 O_{(g)}$$

C.
$$2 C_2 H_{6(g)} + 7 O_{2(g)} \rightarrow 4 CO_{2(g)} + 6 H_2 O_{(g)}$$
 - heat
D. $2 C_2 H_{6(g)} + 7 O_{2(g)} \rightarrow 4 CO_{2(g)} + 6 H_2 O_{(g)}$ + heat

D)
$$2 C_2 H_{6(g)} + 7 O_{2(g)} \rightarrow 4 CO_{2(g)} + 6 H_2 O_{(g)} + heat$$

Physical Street	in Righer (mass = 68 kg) if	he is singing from a s	tage 8m above the
ground	My h	ne is snignig nom a s	tage offi above the
A. 2990 J B) 5331 J C. 7298 J	(68) (9.8)	(8)	
D. 10 487 J	5-5331 5		
42. The F-18 Hornet is flying in the exos	phere at top speed. What ty	pes of energy does it	have?
I Kinetic Energy	motion	position	
II Potential Energy		Y	
III Mechanical Energy	Ex		
A. I only		E _P	
B. I and II only C. II and III only B.I. and III	Em=Ep	7EK	
43. An 18kg water barrel is lowered from above the ground). How has the barre		1991	floor (13 metres
\mathcal{F}	$p_1 = mgh_1$	18)(9.8)(3	30)=5292
10	Ep, -Ep2=	529:2-220	13 = 2999
44. A 2kg fish is swims with 25 J of kines units.	tic energy. How fast is it m	oving? Check your	
A. 5 km/hr B. 18 km/hr	C. 25 km/hr	D. 90 km/hr	
45. A 0.9kg baseball is thrown straight up there is no air resistance, how high wi	To the second se	20m/s. Assuming	
A. 1 m B. 20 m	C. 41 m	D. 200 m	
B & E	Er=Ep		
A) @111 Ex	1 m/v2= m		
	$\frac{1}{2}(20)^2 =$	(9.8) h	

h=20.41m

Potential Energy and
Kinetic Energy

B. Kinetic Energy only
C. Potential Energy only

D. No Energy

47. When does the pendulum have the most mechanical energy (E_M) ?

ASSume mechanical energy is conserved to D. Same at all points

A. Point 1 & 5

B. Points 2 & 4

C. Point 3

48. A metal ball is dropped from 10 metres above the ground and bounces back up into the area. A second ball, identical in every way except with exactly double the mass, is dropped from the same height. If we ignore friction, which of the following statements is true?

A. The second ball will bounce higher than the first ball.

B. The second ball will bounce lower than the first ball.

C. The second ball will bounce the same height as the first ball.

D. We cannot determine the difference between the ball's heights.

masses cancel does not effect height speed

49. A swinging pendulum will eventually come to rest at the bottom with no kinetic energy. Where has the energy gone?

2

A. It has been converted into gravitational energy

B.)It has been converted into heat and sound energy

C. It has been converted into potential energy

D. It has been converted into gravity

50. A basketball (m = 1.15 kg) is dropped from 1.8m and bounces back up to 1.2m. How much mechanical energy is converted into sound energy?

A. 0.69J B. 1.38 J C. 1.79 J

D. 2.07 J

Ep, = Epg +

mgh, = mgh, +

(1.15)(9.8)(1.8) = (1.1

20.29 = +3.52 + Eq -13.52 = +3.52

Eg : 6775

Astronomy Practice Questions

1. What is the current age of the Universe, as estimated by the Big Bang Theory?

A. about 14 000 years

B. about 14 000 000 years

(about 14 000 000 000 years 14billion years)

D. about 14 000 000 000 000 years

2. What does it indicate if light from a galaxy is shifted to the red part of the spectrum?

The galaxy is not moving.

B) The galaxy is moving away from Earth.
C. The galaxy is moving closer to Earth.

- D. The galaxy is moving the same speed as Earth.
- 3. What does the image on the right represent and how can it be used?

A. The spectrum of sunlight, and each colour shows a different element

B. The spectrum of sunlight, and the colours show the presence of hydrogen

C) The spectrum of hydrogen, and the colours are a fingerprint unique to that element

D. The spectrum of hydrogen, and the colours have all been blue shifted by the expansion of the universe.

4. What force holds the stars in a galaxy together in a group?

A. black holes - no + a force.

B. centrifugal force
C. dark matter-not a force

5. The image on the right shows a vast cloud of hydrogen and dust surrounding as a tiny star. The star is 30 km across and spins many times per second. It is possible for light to escape from it. What kind of star is it?

A. a white dwarf

B) a neutron star

C. a proton star

D. a black hole

6. Which electromagnetic waves are observed using an optical telescope?

A. radio

C. infrared

D. X rays

14. V	What is happening in the photograph shown at right?
3	A. Two nebulas are collapsing together B) Two galaxies are colliding C. A star is exploding in a supernova D. Two stars are in close orbit around each other.
15. W	What is the next stage in the life cycle of our Sun?
4	B. red supergiant C. supernova D. black dwarf On the supergiant On the superformation of the superformation
r	approximately how long does it take light to move from the surface of the Sun to the next nearest star, Alpha Centari?
(A. 3 seconds — Earth to moon a back B. 8 minutes — Sun to Earth C) 4 years D. 20 000 years — Core of Sun to Surface of Sun.
17. W	That is the original source of the most hydrogen in the universe?
	A. In nebulas. B. During supernova explosions. C. In the cores of small stars that will not become supernovas. D In the first minute of the Big Bang event, after protons and neutrons came into existance. Thich of the following supports the hypothesis that supermassive black holes exist in the
	A. Rotating spiral galaxies do not fly apart. B. Nebulas collapse into new stars. C. Stars at the centre of the Milky Way seem to be orbiting nothing at all. D. Supernovas may explode and collapse into black holes.
19. In	about 50 billion years, our Sun will no longer be a yellow star. What will it be?
A	A) a white dwarf B. a red dwarf C. a red giant D. a black hole Yellow Jed Jourf Sun Sillium 100 p. llium
20. If	a supergiant star explodes, what will the core of the star turn in to?
<u></u>	A. a white dwarf or a nebula B. a red dwarf or a white dwarf C a neutron star or a black hole D. a black dwarf or a white dwarf

Refer to the Hertzsprung Russell Diagram below for the following questions:

- 21. What is the approximate luminosity and surface temperature of the star Belatrix?
 - A. 4000 brighter than the Sun and 6 000 degrees

B. 4000 brighter than the Sun and 20 000 degrees

C. 10 000 times brighter than the Sun and 6 000 degrees

10 000 times brighter than the Sun and 20 000 degrees

10 tor 1000 x brighter blue/while 20 000 degres

22. What kind of a star is Antares?

- A. main sequence

B. red dwarf
Cred supergiant - Antare 5

D. white dwarf

23. Suppose that Polaris and Sirius looked equally bright as viewed from Earth. Which star would be closest to us?

Sirius 15 Dimmor than Polaris

A. Polaris, because it is yellow.

B. Sirius, because it is white

C. Polaris, because it is brighter.

D) Sirius, because it is dimmer.

-Antanes -Polaris

- Siring