Biology - DNA Mutations

Science 10

Lesson Overview

Warm Up Activity

7 Introduction to Genetic Variations

Mutations & Types

Review & Practice

Going down each row we are going to play a game of "telephone".

- 1. The person at the start of the row will write down a sentence and then say it to the next person.
- 2. Person 2 will then repeat what they heard to person 3 going down the line.
- 3. The last person in the group will write down what they heard.
- 4. REPEAT!

After everyone is done, will discuss the results!

How did the messages change? Does the new message make sense?

DNA Variations

- DNA replicates with an error rate of about 1 in every 1 billion base pairs (1x10⁹).
- The human genome is about 3 billion base pairs long. In theory, that means that there could be three errors per DNA replication cycle.
- These errors lead to **DNA mutations** which can cause significant problems, diseases or changes to the organism (or not!).

DNA Mutations

A mutation is a permanent alteration or change in the DNA sequence that makes up a gene.

Mutations can range in size; they can affect anywhere from a single base pair to an entire chromosome that includes multiple genes.

There are many different ways that DNA can be changed, resulting in different types of mutations. Here is a quick summary of these types.

1. Substitution

- a. Missense
- b. Silent
- c. Nonsense
- 2. Insertion
- 3. Deletion
- 4. Frameshift

Normal DNA:	ATG	TGT	GTT	TAT	GGA
Normal Protein:	Met	Cys	Val	Tyr	Gly
Silent:	ATG	TG <mark>C</mark>	GTT	TAT	GGA
New Protein:	Met	Cys	Val	Tyr	Gly
Missense:	ATG	TG <mark>G</mark>	GTT	TAT	GGA
New Protein:	Met	Trp	Val	Tyr	Gly
Insertion:	ATG	TG <u>G</u>	TGT	TTA	TGG A
New Protein:	Met	Trp	Cys	Leu	Trp
Deletion: New Protein:	ATG Met	TG <mark>_G</mark> Trp	TTT Phe	ATG Met.	GA
Nonsense: New Protein:	ATG Met	TGA STOP	GTT	TAT	

Substitution is a mutation that exchanges one base for another (i.e., a change in a single "chemical letter" such as switching an A to a G).

1. Substitution

- a. Missense
- b. Silent
- c. Nonsense
- 2. Insertion
- 3. Deletion
- 4. Frameshift

Example:

Normal RNA: Mutated RNA: GACCUC GACCCC

Substitution is a mutation that exchanges one base for another (i.e., a change in a single "chemical letter" such as switching an A to a G).

Sickle Cell Anemia: Is cause by a substitution in the beta-hemoglobin gene, which alters Adenine to Thymine.

Insertions are mutations in which extra base pairs are inserted into a new place in the DNA.

1.	Substitution	Example:
	a. Missense	
	b. Silent	Normal RNA:
	c. Nonsense	Mutated RNA:
2.	Insertion	
3.	Deletion	Normal Protein:
4.	Frameshift	Mutated Protein

n:Aspartic Acid—Leucinein:Aspartic Acid—Histidine

GACCUC

GACCACCUC

Deletion Mutations

Deletions are mutations in which a section of DNA is **lost**, or **deleted**.

1.	Substitution	Example:		CTOGAG
	a. Missense b. Silent	Normal RNA: Mutated RNA:		CTAG
2.	Insertion			
3.	Deletion	Normal Protein:	Aspartic Acid—L	eucine
4.	Frameshift	Mutated Protein:	Aspartic Acid	•

Since protein-coding DNA is dividing into codons of three bases long, insertions and deletions can alter a gene so that its message is no longer read correctly. These mutations are called **frameshifts**.

1. Substitution

- a. Missense
- b. Silent
- c. Nonsense
- 2. Insertion
- 3. Deletion
- 4. Frameshift

For example, consider the sentence: "The fat cat sat." Each word is three letters long similar to how we would read a set of codons. If we delete the first letter and decode the sentence the same way it does not make sense.

1. Substitution

- a. Missense
- b. Silent
- c. Nonsense
- 2. Insertion
- 3. Deletion
- 4. Frameshift

Example:

The fat cat sat hef atc ats at...

Xhe fat cat sat hef atc ats at

A substitution mutation is called a **missense mutation** if the substitution **changes** the amino acid.

1.	Substitution	Example:	
	<mark>a. Missense</mark>		
	b. Silent	Normal RNA:	GACCUC
	c. Nonsense	Mutated RNA:	GACCCC
2.	Insertion		
3.	Deletion	Normal Protein:	Aspartic Acid—Leucine
4.	Frameshift	Mutated Protein :	Aspartic Acid—Proline

A substitution mutation is called a **silent mutation** if the substitution **does not change** the amino acid.

1.	Substitution	Example:	Example:		
	a. Missense				
	b. Silent	Normal RNA:	GACCUC		
	c. Nonsense	Mutated RNA:	GACCUA		
2.	Insertion				
3.	Deletion	Normal Protein:	Aspartic Acid—Leucine		
4.	Frameshift	Mutated Protein :	Aspartic Acid—Leucine		

A substitution mutation is called a **nonsense mutation** if the substitution **changes** the amino acid into a **"stop"**.

1.	Substitution	Example:	
	a. Missense		
	b. Silent	Normal RNA:	GACCUC
	<mark>c. Nonsense</mark>	Mutated RNA:	GACUGA
2.	Insertion		
3.	Deletion	Normal Protein:	Aspartic Acid—Leucine
4.	Frameshift	Mutated Protein:	Aspartic Acid–STOP

DNA Mutations

